No Result
View All Result
Saturday, March 6, 2021
Chinese (Simplified)EnglishFrenchGermanItalianJapanesePortugueseRussianSpanish
Near future
  • Home
  • Tech
  • Medicine
  • Society
  • Environment
  • Spazio
  • Transportation
  • Weather
  • concepts
  • H+
Near future
No Result
View All Result

Human cells reprogrammed with Yamanaka factors rejuvenate 30 years

A new method of reprogramming human cells with Yamanaka factors achieves extremely better results than previous ones.

Gianluca Riccio di Gianluca Riccio
February 2 2021
in Medicine
human cells
Send to FacebookPin on PinterestSend on TwitterSend on Whatsappon Linkedin

Researchers from the Reik laboratory at the Babraham Institute in Cambridge have achieved excellent results. Using the four Yamanaka reprogramming factors (OSKMs) they epigenetically rejuvenated human cells by 30 years.

Previous experiments had failed in one element. While exposure of human cells to Yamanaka factors rejuvenates them, it induces pluripotency to turn them into stem cells, causing them to lose their cellular identities (and therefore function). 

It's a long-standing problem. You need to expose your cells to these factors long enough to get the rejuvenation, but allowing them to retain their identity.

Maybe you are also interested

Is life expectancy written in our DNA?

Aging without old age: we can get there very soon

Regenerating therapy, we are now one step away: there are just 5 years left.

A special hyperbaric therapy can stop and reverse aging

human cells rejuvenation factors Yamanaka
the Babraham Institute in Cambridge.

The Yamanaka factors

There are four transcription factors: Oct4, Sox2, Klf4 and cMyc (OSKM). Using them reliably creates iPS cells, but can cause unwanted effects, some of which can lead to cells becoming cancerous.

The Cambridge study of human cells

The researchers of this study they used an approach that exposed the cells to sufficient reprogramming factors to push them beyond the limit where they were considered somatic rather than stem cells. Just beyond. Fibroblasts that have been reprogrammed in this way have retained enough of their epigenetic cellular memory to become fibroblasts again. Researchers call this new method as transitional reprogramming in the ripening phase (MPTR).

Great results, and some drawbacks

The MPTR method has had substantial positive results. According to Horvath's multi-tissue clock, a biochemical test born in 2013 used to measure age, after 13 days of reprogramming, 60-year-old human cells became epigenetically equivalent to cells that were about 25 years old. Another test born in 2018, the epigenetic clock of skin and blood, showed that cells that were around 40 years old were epigenetically reported to those of a 25-year-old.  The technique also substantially rejuvenated the transcriptome, the collection of proteins produced by genes.

There are, of course, some caveats. Most important, of course, is that this experiment was performed on human donor cells, but not on a human volunteer. Therefore, systemic factors known to affect the epigenome, such as those found in ancient blood, were not applied.

PMTR on human cells: 10 days are few, 17 are too long

Exposure of these cells to Yamanaka OSKM factors was also controlled in the dosage forms. 10 days of exposure did not epigenetically rejuvenate the cells as well as 13 days of exposure, but the researchers showed that too much exposure (15 and 17 days) led to cellular stress that aged the epigenome again. This study had only a few donors, and the results after 13 days varied greatly from person to person.

human cells yamanaka factors
A graph showing the results of tests for partial exposure of human cells to yamanaka factors

The effect of MPTR exposure on telomeres

MPTR did not positively affect the sign of telomere friction aging. When the cells were allowed to be completely reprogrammed into stem cells, their telomeres began to extend; but this partial reprogramming led to a moderate shortening of telomeres even though it rejuvenated the epigenomes of the cells.

Furthermore, MPTR did not work on all human cells and achieved these results after screening procedures that divided the cells into failed and successful reprogramming groups. However, the 'failed' group also achieved partial successes in many key parameters of aging and cellular health.

Conclusions

Although this experiment demonstrated that it is possible to epigenetically reprogram viable human cells under laboratory conditions, applying such an approach in the clinic would require considerable development of the biotechnological fundamentals in order to provide each of the patient's individual cells the exact amount of OSKM it needs to be successfully rejuvenated and no more. This technology is not yet on the horizon.

And for therapies based on human cell cultures?

The consideration is different on the fact that such an approach can be used for the development of human cell cultures to be reintroduced in an elderly person. This experiment used fibroblasts, which form collagen, so it is reasonable to imagine a world in which such reprogrammed human cells are developed as a therapy against wrinkles and other effects of aging of the extracellular matrix. 

This approach could someday be used to create viable, rejuvenated populations of muscle (including heart muscle) and brain cells. Such newly reprogrammed "quasi-somatic" human cells may ultimately be the best option in many clinical applications.

Whichever approach is most effective, we look forward to the day when our cells can be epigenetically reprogrammed in youth and reintroduced into our bodies to ward off the signs of aging.

Such a treatment will increase our longevity and save us more time. Time in which further anti-aging therapies can be developed.

tags: longevismlongevity
Previous post

Digital payments and privacy issues

Next article

Brain signals deciphered to show what a person sees

Gianluca Riccio

Gianluca Riccio

Gianluca Riccio, born in 1975, is the creative director of an advertising agency, copywriter and journalist. He is affiliated with Italian Institute for the Future, World Future Society and H +, Network of Italian Transhumanists. Since 2006 he directs Futuroprossimo.it, the Italian resource of Futurology.

Maybe you are also interested in:

covid africa
Medicine

2-4 million direct and indirect deaths from Covid not counted in Africa

plant against dizziness
Medicine

An implant in the inner ear restores balance to those suffering from vertigo

A team reprograms the cartilage that produces its own anti-inflammatories
Medicine

A team reprograms the cartilage that produces its own anti-inflammatories

Next article
Brain signals deciphered to show what a person sees

Brain signals deciphered to show what a person sees

vacuum cleaner without electricity

OMIT, the hand-held vacuum cleaner without electricity

Leave a comment Cancel reply

Your email address will not be published.

Collaborate!

We are open to visions about the future. Submit an article, disclose the results of a search or scientific discoveries, shows points of view on a theme, tells about a change.

Contact us
The last
  • Scientists have discovered a mysterious layer in the Earth's coreMarch 5 2021
    A new layer inside the Earth's core shows us new scenarios on its formation and on the geological phenomena taking place before man arrived.
  • 2-4 million direct and indirect deaths from Covid not counted in AfricaMarch 5 2021
    Only 8 countries in Africa officially and unambiguously register their victims: this leads to having to consider very much the deaths from Covid. And it raises a serious alarm.
  • Autonomous Pods: Single mini buses reinvent public transportMarch 5 2021
    Rolla is a very versatile individual public transport concept, which has very clear ideas about the future of urban connections. Really interesting.

Most read of the week

  • M1, the huge 165-inch MicroLED TV vanishes into thin air when turned off

    M1, the huge 165-inch MicroLED TV vanishes into thin air when turned off

    67 shares
    Share 26 Tweet 17
  • Scientists levitate a plastic disc using only light

    66 shares
    Share 26 Tweet 16
  • World population growth will stop after centuries

    3134 shares
    Share 1253 Tweet 783
  • V90 Villa Edition, camper with terrace on the second floor

    228 shares
    Share 91 Tweet 57

Futuroprossimo.it is an Italian resource of futurology opened since 2006: every day news about the near future. Scientific discoveries, medical research, prototypes, concepts and predictions about the future for free.

Tag

Environment Architecture Communication concepts Advice Energy Events Gadgets The future of yesterday The newspaper of tomorrow Medicine Military Weather Robotica Society Spazio Technology transhumanism Transportation Video

Categories

The author

Gianluca Riccio, copywriter and journalist - Born in 1975, he is the creative director of an advertising agency, he is affiliated with the Italian Institute for the Future, World Future Society and H +, Network of Italian Transhumanists.

Collaborate! Are you interested in writing a post on Futuroprossimo? Click here for contacts.

Home / Author / IDEA / archive / Promo on FP

© 2020 Futuroprossimo - Tailored by Be Here

© 2020 Futuroprossimo - Tailored by Be Here

  • Home
  • Contact
  • archive
  • Technology
  • Medicine
  • Transportation
  • Weather
  • Society
  • Environment
  • transhumanism

© 2019 Futuroprossimo - Tailored by To be here

This site uses cookies. By continuing to read it, you consent to their use.